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ABSTRACT

Cross-stream mixing and Lagrangian transport caused by chaotic advection within a baroclinic (2½ layer)
meandering jet are investigated. The quasi-steady meanders arise as a result of evolution from an initial small-
amplitude instability. The investigation keys on the proposition, made in earlier work, that the cross-jet mixing
and transport resulting from the meandering motions are maximized at a subsurface level. It is found that the
results depend largely on the size of the shear between the two active layers (which are referred to as the upper
and lower layer), as measured by a parameter a. For weak vertical shear (a greater than about 0.5) the primary
instability is barotropic and there is no cross-jet transport in either of the active layers. Barriers to transport are
identified as plateaus in the probability density function (PDF) of potential vorticity distributions. For stronger
shear (a less than about 0.4), baroclinic instability comes into play, and the lower layer experiences barrier
destruction followed by cross-jet exchange and mixing. The upper-layer barrier remains intact. The barrier
destruction has a dynamical effect as evidenced by the decay of total variance of potential vorticity in the lower
layer. Of interest is that the value of a estimated for the Gulf Stream lies in the range 0.4–0.5.

1. Introduction

The role of chaotic transport in the exchange and
mixing within and across meandering jets has been the
topic of numerous studies over the past decade. Such
studies are aimed at uncovering a mechanism for the
transport of physical and biological quantities across
geophysically relevant jets without the aid of major eddy
detachments. Early work by physical oceanographers
(Bower 1991; Samelson 1992) was motivated by Gulf
Stream observations based on drifting instruments in
regions void of detaching rings. The float trajectories
suggested the presence of mixing around the edge of,
but not across, the stream at shallow depths, whereas
deeper trajectories were observed to more readily cross
the stream (Bower et al. 1985). Evidence of enhanced
exchange at depth due to Gulf Stream meandering mo-
tions had also been found in a quasigeostrophic eddy-
resolving general circulation model by Lozier and Riser
(1990). Independent of the work in the oceanographic
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community, Sommeria et al. (1989) and Behringer et
al. (1991) had conducted laboratory experiments in-
volving a barotropic jet produced by sources and sinks
in a rotating annulus. A main point of focus in these
studies was the strong potential vorticity gradient that
formed in the core region of the jet and acted as a barrier
to mixing across the jet. A point of contact between the
two bodies of work is that the potential vorticity gradient
across the Gulf Stream generally weakens with depth
(Bower and Lozier 1994), suggesting that cross-stream
transport may occur more easily at depth. A demon-
stration of the effect in a linear model with vertical but
not horizontal shear appears in Lozier and Bercovici
(1992).

Since these early studies, there have been a number
of theoretical and numerical investigations that have at-
tempted to establish the dynamical consistency and ro-
bustness of meander induced transport and mixing. The
starting point for many of these studies is the consid-
eration of an eastward jet with velocity U(y), to which
is added a small-amplitude, steadily propagating me-
ander. If the meander speed c is eastward and less than
the maximum value of U, then the streamlines of the
flow as seen by an observer moving with the meander
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will look roughly as sketched in Fig. 1a. The motion in
the central region or core of the jet is eastward while
the motion in the far field appears to be westward. The
core and far field regions are separated by rows of cat’s
eyes centered about the critical (or ‘‘steering’’) lines y
5 yc of the meanders, defined by U(yc) 5 c, where
U(y) is the rest frame velocity of the undisturbed jet.
Motion in the cat’s eyes consists of closed orbits, which
are isolated from the streaming motion on either side.
There is no mixing nor transport between the various
regions. It has been well documented, however, that
transport between the various regions can occur when
the flow is perturbed, either by the introduction of a
secondary meander with a different c (e.g., Behringer
et al. 1991; Samelson 1992; del-Castillo-Negrete and
Morrison 1993; Meyers 1994; Pratt et al. 1995; Duan
and Wiggins 1996; Miller et al. 1997; Rogerson et al.
1999) or by some type of forcing or dissipation (Dut-
kiewicz et al. 1993). Under these conditions, fluid par-
cels near the separatrices defined by the edges of the
original cat’s eyes (Fig. 1a) begin to cross and wander
between the three regions of different predominant mo-
tion. The flux of fluid from one region to the next can
be quantified using lobe analysis [see general discussion
by Wiggins (1992) and jet-specific calculations by Duan
and Wiggins (1996), Miller et al. (1997), and Rogerson
et al. (1999)] and it can be shown that fluid parcels that
participate in the exchange undergo stretching and fold-
ing at a rate exponentially rapid in time. As a result of
this stirring process, gradients of passive tracers carried
by the fluid are rapidly intensified and eventually
smoothed by diffusion or subgrid-scale processes. Un-
der these conditions the exchange process can be de-
scribed as ‘‘chaotic transport’’ since the fluid trajectories
are chaotic, at least where chaos can formally be defined.

If the perturbation is small the regions of Lagrangian
chaos are limited to something like the shaded bands in
Fig. 1b. The centers of the cat’s eyes, the far field, and
the central core of the jet are not penetrated by the
chaotic motion and experience no enhanced stretching
and folding of fluid elements. There is no transport
across the central core of the jet. Cross-jet transport can,
however, be generated if the amplitude of the primary
meander is increased to the point where the Fig. 1a
separatrices begin to touch each other. This ‘‘separatrix
reconnection’’ has been demonstrated in the context of
kinematic models and linear models in which the me-
ander amplitude is arbitrarily made finite (e.g., del-Cas-
tillo-Negrete and Morrison 1993). Attempts to repro-
duce this effect in models that are dynamically consis-
tent generally fail to do so. For example, Miller et al.
(1997) and Rogerson et al. (1999) analyzed a fully non-
linear numerical model in which nearly steady, finite
amplitude meanders of a barotropic, b-plane jet arise
because of barotropic instability. The meander ampli-
tudes are large and stirring around the edge of the cat’s
eyes (as in Fig. 1b) is observed, but the jet core main-

tains a strong potential vorticity gradient that acts as a
barrier.

There are reasons to believe, however, that the baro-
tropic model is restrictive and that cross-jet transport
might occur more easily in a baroclinic model at certain
depths. Bower and Rossby (1989), Meyers (1994), and
especially Pratt et al. (1995) have outlined a scenario
whereby enhanced transport with depth could occur.
Suppose that the pattern shown in Fig. 1a is represen-
tative of the surface flow of a baroclinic jet such as the
Gulf Stream. If the meander is a normal mode of the
undisturbed jet, its phase speed will be constant through-
out the water column. If one examines the flow at deeper
levels, where the undisturbed velocity U(y, z) is weaker,
then the critical lines of the meander must lie closer to
the jet core. If U decays to zero at great depth, it should
be expected that a level zc will occur where the critical
lines merge. At this level, or perhaps a level slightly
higher, separatrix reconnection should occur and trans-
port across the central core of the jet should be facili-
tated. This explanation tacitly assumes that the meanders
are linear. If the meanders are large, the corresponding
wave-mean flow interactions associated with a large am-
plitude meander might severely alter the mean flow,
raising the question of how best to define U(y, z). Also,
the amplitude of the meander may vary substantially
with depth and this variation may be more important to
the occurrence of separatrix reconnection than are var-
iations of yc with depth.

Yuan et al. (2002, hereinafter YPJ02) simulated the
changes in environment caused by variations in z by
changing the value of b in a barotropic jet model. In
their numerical model, a meandering jet similar to that
shown in Fig. 1b is set up by allowing a small-amplitude
instability of the initial state u 5 U(y) to develop. The
value of b is positive and the propagation speed of the
finite-amplitude meander that results from the growth
of the perturbation is eastward. A series of numerical
runs are performed in which U(y) is maintained while
b is reduced. Not surprising is that the equilibrated me-
anders that develop propagate more rapidly with respect
to the basic state and have suitably defined critical lines
that lie closer to the jet centerline. At the same time,
the potential vorticity gradient across the jet core, which
is due in part to b, weakens. As b approaches zero
separatrix reconnection occurs and transport and mixing
take place across the centerline of the jet. (If b is de-
creased below zero the central barrier quickly reemerges
and transport and mixing are again confined to the edges
of the jet.) It is thought that the decrease in b in the
barotropic model may be analogous to a decrease in
depth in the Gulf Stream: the phase speed to jet speed
ratio increases and the potential vorticity gradient in the
central core weakens.

Do the effects postulated above actually occur in a
dynamically consistent baroclinic model and, if so, is
destruction of the central barrier at depth a robust fea-
ture? The purpose of this work is to investigate whether
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FIG. 1. (a) Schematic of streamlines in a meandering jet as viewed by an observer moving with the eastward (left
to right) speed of the steadily propagating meander. (b) When the meandering flow in (a) is perturbed, fluid trajectories
around the edges of the separatrices become chaotic. Stirring and exchange between the jet core, cat’s eyes, and
retrograde regions occurs within the shaded bands.

the mechanism in question, specifically the merger of
critical lines at depth and the consequent cross-core
transport and mixing, occur within the context of a 2½-
layer model and to understand the key underlying mech-
anisms that might be responsible for such an event. In
the kinematic models of previous studies, the lack of
dynamical consistency makes it impossible to uncover
the underlying physical mechanisms for the potential
enhanced transport at depth. Specifically, we examine
a zonal jet with an initial Gaussian velocity profile in
each active layer, the lower-layer velocity being weaker
than the upper layer velocity by a factor a. The initial
state consists of a weakly perturbed version of this un-
stable jet. After a period of rapid adjustment and me-
ander growth, the jet settles into a state in which the
upper layer is dominated by a primary meander that
propagates eastward at an approximately steady speed

and that may experience only gradual changes in am-
plitude. Although transport and mixing occur along the
edges of the upper layer jet, the core region maintains
a strong potential vorticity gradient that acts as a barrier
to transport. The main question is whether the transport
barrier in the lower layer is destroyed. We will show
that the barrier is indeed destroyed when a is less than
0.4–0.5 and that this threshold corresponds to the oc-
currence of baroclinic instability in the model. For val-
ues of a . 0.5 the instability is barotropic and transport
barriers are maintained in both layers. The threshold
values (0.4–0.5) of a are robust over a wide range of
the remaining two parameters F1 and F2 in the model,
both of which are related to the ratio of initial jet width
to the baroclinic Rossby radii of deformation. This range
includes settings estimated directly from Gulf Stream
velocity and density profiles. Of interest is that the value
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of a estimated from the same data lies in the range 0.4–
0.5.

The destruction of the lower-layer barrier is docu-
mented in various ways, including the behavior of stable
and unstable manifolds of hyperbolic trajectories to the
sides of the jet, counts of fluid parcels crossing the
position of the upper-layer barrier, and the occurrence
of plateaus in the probability density function (PDF) of
potential vorticity distribution. The barrier destruction
also has a dynamical consequence for the jet as evi-
denced by enhanced decay of the total variance of po-
tential vorticity. We also attempt to document the inward
migration of the lower-layer critical lines as a decreases
and relate this to the onset of barrier destruction. Al-
though there is some value in this interpretation, the
picture is clouded by uncertainties in defining critical
lines when the meander amplitude is very large and
modifications of the mean flow are severe. We conclude
that the destruction of the lower-layer barrier is related
to both the inward migration of critical lines and the
large size of the lower-layer meanders that occurs in the
presence of baroclinic instability. The transient nature
of the enhanced mixing suggests that it is excited during
bursts of baroclinic instability. We also attempt to make
a connection with the results from the (barotropic) mod-
el of YPJ02. Although it is possible to do so, F1 and
F2 need to be reduced so as to fall below the range
thought relevant to the Gulf Stream.

This paper is organized as follows. In section 2, we
describe the numerical model used in this study. Flow
geometries are examined in section 3. Cross-jet transport
is analyzed in section 4. In section 5, we discuss the
impact of transport barriers on potential vorticity mix-
ing. Section 6 deals with separatrix reconnection. Last,
we summarize our results and discuss their relevance
to the Gulf Stream.

2. Model

The numerical model is based on an f -plane, qua-
sigeostrophic, 2½-layer model used by da Silveira and
Flierl (2002). It consists of two active layers lying on
top of a third infinitely thick, inactive deep layer. The
dynamics of the two active layers is governed by

d ] ]c ] ]c ]1 1 2q [ 2 1 q 5 m¹ q (2.1)1 1 11 2dt ]t ]y ]x ]x ]y

and

d ] ]c ] ]c ]2 2 2q [ 2 1 q 5 m¹ q , (2.2)2 2 21 2dt ]t ]y ]x ]x ]y

where m is a numerical dissipation coefficient and c i,
i 5 1, 2, denotes the streamfunction in the upper and
lower layers, respectively; qi is the potential vorticity,
defined by

2q 5 ¹ c 2 F (c 2 c ) and (2.3)1 1 1 1 2

2q 5 ¹ c 2 F (2c 2 c ), (2.4)2 2 2 2 1

where

2 2f W0F 5 ; (2.5)i gD (Dr /r )i i 1

f 0 is the Coriolis parameter, W is a width scale for the
jet, Di is the depth of the ith layer, r1 is the density in
the upper layer, and Dri/r1 is the relative density jump
across the ith interface.

Typical values of F1 and F2 have been estimated from
vertical profiles of potential density [su(z)] and eastward
velocity measured within the core of the Gulf Stream
at 528W (Hall et al. 2004, manuscript submitted to J.
Geophys. Res.; Fig. 2). Most of the variation of density
and velocity occur within the top 1000 m or so, and we
therefore place the two active layers of the model there.
A logical position for the upper interface would be
around 400–600 m depth, corresponding to the depth
of strongest vertical shear. Taking the Gulf Stream half-
width W to be 50 km, f 5 1024 s21, and using average
values of su from a 400-m-thick upper layer and a 700-
m-thick lower layer lead to Dr1/r1 ø 0.0009, Dr2/r1 ø
0.0004, F1 ø 6.9, and F2 ø 8.9. The corresponding
ratio of average lower-layer to average upper-layer ve-
locity is about 0.50. A 500-m-thick upper layer and 600-
m-thick lower layer yield the values F1 ø 5.6 and F2

ø 4.6 with velocity ratio about 0.46. The parameter
values used in this paper are listed in Table 1.

Equations (2.1)–(2.4) are solved in the dimensionless,
doubly periodic domain, 0 # x # L, 2L/2 # y # L/2,
chosen for simplicity, using a 128 3 128 grid, with the
initial condition

c (x, y, 0) 5 C (y), (2.6)1 0

c (x, y, 0) 5 aC (y), and (2.7)2 0

C (y) 5 2erf(y) 1 2y/L 1 e sin(kx) (2.8)0

corresponding to

2 222y /2u(x, y, 0) 5 e 2 1 ek cos(kx). (2.9)
LÏp

The upper-layer initial condition, a Gaussian jet with a
weak meander, was used by Flierl et al. (1987), who
analyzed the nonlinear stability regimes for this jet in
a barotropic b-plane model. For values of k and b, the
flow evolves into a state dominated by steadily propa-
gating, finite amplitude meanders. Transport properties
associated with these jets were investigated by Rogerson
et al. (1999) and YPJ02. In the present model the initial
motion in each active layer consists of a weakly per-
turbed jet, with the lower layer velocity reduced by a
factor a. This measure of the initial vertical shear turns
out to be the most important parameter in this study.
The remaining parameters F1 and F2 are varied over a
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FIG. 2. Eastward velocity and potential density [su(z)] measured under the surface expression of the centerline of
the Gulf Stream. The two [su(z)] profiles are from separate CTD casts (from Hall et al. 2004, manuscript submitted
to J. Geophys. Res.).

TABLE 1. Values of parameters used in this paper.

f0

g
m
W
D1

D2

1.0 3 1024 s21

10 m s22

1.0 3 1024

40–70 km
400–600 m
600–700 m

Dri/r1

L
e
k
F1

F2

0.4 3 1023 to 1.0 3 1023

25.6
0.02
0.736

5–35
1–10

4 3 4 grid within the ranges 5 # F1 # 35, 1 # F2 #
10.

3. Geometry of Eulerian fields

The evolution of the flow undergoes several phases.
Initially, the perturbation grows rapidly in time, similar
to a typical case of barotropic instability. This phase is
marked by a rapid increase in eddy kinetic energy [EKE,
defined in Eq. (3.3)] and lasts several periods of the

initial meander or about 100 time units (Figs. 3c,d). As
we will demonstrate, the subsequent evolution depends
on the presence or lack of baroclinic instability. In the
latter case, the jet settles into a quasisteady, meandering
phase lasting 500–1000 time units and characterized by
a slow viscous decay of order 5%. The dominant wave-
length is the initial wavelength. In the former case, the
initial barotropic growth is followed by an extended
period of gradual baroclinic growth. The upper layer
during this phase is dominated by a slowly growing
meander, again with the initial wavelength. In either case
it is the secondary phase that is the subject of the La-
grangian transport analysis.

The character of the growth (barotropic or barotropic
followed by baroclinic) is controlled primarily by the
vertical shear parameter a. For each (F1, F2) setting,
we perform a series of runs in which a 5 1.0, 0.9, 0.8,
. . . , 0.0. For the majority of the 19 (F1, F2) combi-
nations explored, the transition from barotropic to mixed
growth, and the geometry of the middle layer, occurs
as a passes a threshold in the range 0.4–0.5.

As an example, consider the case F1 5 5 and F2 5
4. Figure 4 displays the potential vorticity contours for
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FIG. 3. Time series of total kinetic energy (KE), eddy kinetic energy (EKE), and available potential energy (APE)
for F1 5 5 and F2 5 4: (a) KE, a 5 0.4; (b) KE, a 5 0.5; (c) EKE, a 5 0.4; (d) EKE, a 5 0.5; (e) APE, a 5 0.4;
(f ) APE, a 5 0.5.

a 5 0.5, which is slightly above the threshold. In both
the upper and lower layer the flow still consists of jets
with eastward propagating meanders. In each case the
central region (or ‘‘core’’) of the jet contains a strong
potential vorticity gradient. Cat’s-eye eddy motions ex-
ist to the immediate north and south of the core. Com-

parison of snapshots at t 5 500 and t 5 200 shows little
changes in the geometric patterns.

At a 5 0.4 the meander is steeper (Fig. 5) when
compared with a 5 0.5 and the geometry in the lower
layer is quite different. The central core with strong
potential vorticity gradient is less distinct and streamers
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FIG. 4. Potential vorticity contours for F1 5 5, F2 5 4, and a 5 0.5 [bright (dark) regions correspond to high (low) values]: (a) t 5 200,
the upper layer; (b) t 5 500, the upper layer; (c) t 5 200, the lower layer; (d) t 5 500, the lower layer.

extend across the core (Figs. 4c,d). Small-scale filaments
and patches are more abundant. In addition, the meander
amplitude continues to increase slowly in time. As com-
pared with t 5 200, the potential vorticity distribution
in the central band is more filamented at t 5 500, and
the amplitude has increased. These changes suggest that
instability persists for a much longer time than is the
case for a . 0.5. In fact, saturation does not occur until
t 5 800.

If a is further reduced, the amplitude of the saturated
meanders will increase. When a is less than 0.3, the
meanders quickly grow to the point where their edges
touch the periodic meridional boundaries of the domain
and the integration is stopped.

In order to understand what causes the sudden change
of flow geometry as a passes through the threshold
value, we draw ideas from the instability theory and
examine the temporal change of kinetic energy (KE),
available potential energy (APE), and EKE, which are
defined as follows:

2 2L /2 L 2 D ]c ]ci i iKE 5 1 dx dy, (3.1)OE E 1 2 1 2[ ]2D ]x ]yi512L /2 0

L /2 L F
2 2APE 5 [(c 2 c ) 1 c ] dx dy,E E 1 2 22

2L /2 0 (3.2)
and

2L /2 L 2 D ]ci iEKE 5 1 ^u & dx dy, (3.3)OE E i1 2D ]yi512L /2 0

where D 5 D1 1 D2, F 5 F2D2/D 5 F1D1/D, and ^ui &
5 2(1/L) # (]ci /]y ) dx. The time series are shown inL

0

Fig. 3. Notice that for a 5 0.5, both KE and APE remain
relatively constant. The total energy decays slightly in
time because of dissipation. However, for a 5 0.4, there
is a period (approximately 150 # t # 400) during which
KE grows quite rapidly, accompanied by fast decay of
APE. Because the release of APE is associated with
relaxation of the tilt of the isopycnal-layer interfaces,
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FIG. 5. Potential vorticity contours for F1 5 5, F2 5 4, and a 5 0.4: (a) t 5 200, the upper layer; (b) t 5 500, the upper layer; (c) t 5
200, the lower layer; (d) t 5 500, the lower layer.

FIG. 6. A stability diagram for flows with a fixed at 0.4 and with
various F1 and F2. Flows that are baroclinically unstable (stable) are
marked with crosses (circles).

the consequent meander growth can be viewed as bar-
oclinic instability.

To test the robustness of the above results, similar
analyses have been conducted at 16 different choices of
F1 and F2 (Table 1). In all but three of the tested cases,
similar geometry changes are identified by increasing the
vertical shear in the initial jet profile, and for each of
these cases the threshold is a ø 0.5. Applying the pre-
vious energetic analysis, we find that the flows are baro-
clinically unstable when a is below this threshold (Fig.
6). The main differences among these 16 cases are that,
for larger values of F1 and F2, the meanders are more
compact and that the development of the meanders and
the onset of baroclinic instability occur sooner in time.
The three exceptional cases correspond to F2 5 1 and
F1 $ 10. These settings are probably unrealistic for the
Gulf Stream because the upper layer is too shallow.

It is possible to draw a connection between the present
findings and the result of YPJ02 for a single layer (baro-
tropic jet). In the latter the potential vorticity is given
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by ¹2c 1 by, where b is the planetary potential vor-
ticity gradient, used here to simulate the effect of cross-
jet variation of the thickness of isopycnal layers. Se-
paratrix reconnection was observed by YPJ02 only for
b 5 0. In the present model, by is replaced by 2F1(c1

2 c2) and F2(c1 2 2c2) in the upper and lower layers.
If the flow consisted of two slabs of uniform velocity
U1 and U2 5 aU1 in the upper and lower layers, then
the associated potential vorticity gradients would be giv-
en by

]
[2F (c 2 c )] 5 F (U 2 U )1 1 2 1 1 2]y

5 (1 2 a)F U . 0 and (3.4)1 1

]
[F (c 2 2c )] 5 2F (U 2 2U )2 1 2 2 1 2]y

. 0 (a . 0.5)
5 (2a 2 1)F U 5 0 (a 5 0.5)2 1 
, 0 (a , 0.5).

(3.5)

For a . 0.5, both terms are positive and the slab
flow is stable according to the necessary conditions for
baroclinic instability. For a , 0.5, the first term remains
positive while the second is negative, meaning that the
necessary condition is satisfied. This is not the full story:
potential vorticity gradients due to horizontal shear also
come into play when jets are present. Nevertheless the
connection between the ‘‘ambient’’ potential gradients
b and F2(c 2 2c2) is suggestive. Results obtained from
the present model approach the flows obtained by YPJ02
if F1 and F2 are made small, rendering the flow more
barotropic.

4. Cross-jet transport

In YPJ02, cross-jet transport was identified by com-
puting effective invariant manifolds (EIMs). EIMs are
time slices of distinguished material surfaces that are
pinned by hyperbolic regions, that is, where fluid parcels
experience strong stretching. The tangling of stable and
unstable manifolds marks off regions of fluid that are
exchanged between different regimes. The mathematical
theory can be found in Wiggins (1992) and generaliza-
tions are discussed by Miller et al. (1997), Haller and
Poje (1998), Malhotra and Wiggins (1998), Rogerson
et al. (1999), and others.

The above technique is also employed in the current
study. First consider the flow for F1 5 5, F2 5 4, and
a 5 0.5. To compute the unstable (stable) manifolds for
the period 200 # t # 500, we initialize small line seg-
ments at t 5 200 (t 5 500) in the hyperbolic regions
to the north (south) of the meander crests (troughs)
aligned roughly along the unstable (stable) direction.
These line segments are then evolved in forward (back-

ward) time. As an estimate of the locations of the hy-
perbolic regions, we choose the vicinities of the hy-
perbolic stagnation points identified in a common mov-
ing reference frame with the propagating meander. The
stable and unstable directions are estimated by the di-
rections of the separatrices associated with these stag-
nation points. In this and each of the following exper-
iments, slightly different line segments are also used as
initial conditions for comparison. The resulting mani-
folds are not sensitive to the particular choices. The t
5 350 snapshots of the EIMs are shown in Fig. 7. In
both layers, the EIMs delineate the cat’s-eye structures
along the sides of the meander. The stable and unstable
manifolds are separated by the meander indicating the
presence of transport barriers in both layers.

When a is reduced to 0.4, the patterns of the EIMs
change dramatically (see Fig. 7). In the lower layer, the
stable and unstable manifolds are entangled in a com-
plicated way. These manifolds seem to occupy the entire
central region. Intersection of these manifolds implies
that cross-jet transport exists. Although we still speak
about ‘‘manifolds,’’ these EIMs do not appear to be
smooth manifolds, apparently because of the small-scale
eddies developed during the period of baroclinic growth.
In the meantime, the barrier in the upper layer remains
intact. It should be noted that cross-jet transport is en-
hanced only during the period of baroclinic instability.
After the baroclinic growth is saturated, a central barrier
is formed in the lower layer again. Figure 8 shows the
EIMs in the lower layer computed for the period 800
# t # 1100. The stable and unstable EIMs are clearly
separated.

Similar results are found for other values of F1 and
F2 in Table 1, with the same exceptional values as in
section 3. In particular, the upper layer always contains
a central barrier. However, the central barrier in the low-
er layer is generally destroyed when a , 0.5.

We now attempt to quantify cross-jet Lagrangian
transport in the lower layer, focusing on the case F1 5
5, F2 5 4, a 5 0.4. If the tangle of the EIMs displays
simple geometry, a natural reference boundary for trans-
port can be constructed by piecing together parts of the
EIMs, and lobe dynamics can be used to calculate the
transport (Wiggins 1992; Miller et al. 1997; Rogerson
et al. 1999). However, the geometry shown in Fig. 7 is
quite intricate, making it very difficult to resolve each
lobe structure.

Insights for definition of a reference boundary can be
gained by inspecting the flow geometry in the upper
layer. The EIMs delineate the edges of the meander,
which are also traced by the sharp edges of the potential
vorticity contours shown in Fig. 5. To highlight their
agreement, we superimpose in Fig. 9 the EIMs with the
potential vorticity contours. The highlighted contours
(corresponding to q 5 21.5 and q 5 1.5 respectively)
closely overlap with the envelope of the EIMs. Based
on this picture, we define the central stream as the region
between the q 5 21.5 and q 5 1.5 contours in the
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FIG. 7. Snapshots of the EIMs for F1 5 5 and F2 5 4 at t 5 350. Red (blue) curves represent unstable (stable)
manifolds: (a) a 5 0.4, the upper layer; (b) a 5 0.5, the upper layer; (c) a 5 0.4, the lower layer; (d) a 5 0.5, the
lower layer.

upper layer, extended vertically to the lower layer.
Cross-jet transport is associated with fluid motion across
this central stream. As discussed earlier, fluid particles
can be transported across the central stream only in the
lower layer.

There is a caveat in using the reference boundary
defined in the above for quantifying transport in the
lower layer. During the period of baroclinic instability,
the meander in the lower layer lags behind that in the
upper layer. Therefore some fluid particles that cross
this reference boundary may actually remain on the
same side of the ‘‘true’’ central stream. As an example
in point, it is possible that fluid particles may cross a
reference boundary defined in one way, while the flow
actually contains a transport barrier. In our case, how-
ever, the phase lag is very weak. Comparison of Figs.
4a and 4c shows that the meanders in the upper and
lower layers are almost in phase with each other. In fact,
the flow is only weakly baroclinically unstable, as in-
dicated by Fig. 3. As such, the systematic error due to
the phase lag can be neglected.

A total of 16 384 fluid particles are launched in the
lower layer on a uniform 128 3 128 grid at t 5 200.
These particles are then advected in forward time. The
time spent before a fluid particle crosses the reference
is referred to as its crossing time. (If a particle never

crosses the reference, its crossing time is defined as
infinity.) Figure 10 shows a histogram for crossing time
binned in intervals of 50 time units. In total, about 3800
(23%) fluid particles are transported across the reference
during the period 200 # t # 500. Thus a significant
number of fluid particles can be transported across the
central stream during the period of baroclinic growth.

5. Mixing

In order to understand the role of transport barriers
in controlling mixing, we first discuss enhancement of
mixing by chaotic advection. Suppose that a passive
tracer, such as a dye, is initially concentrated in a blob
of fluid in a chaotic region. In the presence of Lagrang-
ian chaos, this blob experiences strong stretching and
folding. As a result, finer and finer striations are de-
veloped. Molecular (or numerical) diffusion acts pref-
erentially on the enhanced gradients, resulting in mix-
ing.

In the presence of transport barriers, chaotic fluid
motion is confined to localized regions. Passive tracer
distributions are homogenized in each region, but not
across the barriers. As pointed out by Hu and Pierre-
humbert (2001) the homogenized regions show up as
peaks and barriers as plateaus in the tracer PDF. This
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FIG. 8. Snapshots of the EIMs for F1 5 5, F2 5 4, and a 5 0.4 at t 5 950: (a) the upper layer, and (b) the
lower layer.

FIG. 9. Potential vorticity contours (green curves) superimposed with EIMs (red and blue curves)
at t 5 350 for F1 5 5, F2 5 4, and a 5 0.4. Distinguished contours, corresponding to q 5 1.5
and q 5 21.5, respectively, are highlighted by black contours to show agreement with the envelope
of the EIMs.

technique is employed here to investigate potential vor-
ticity mixing. Although potential vorticity is not a pas-
sive tracer, the interpretation in terms of PDFs is the
same. In Fig. 11, we plot PDFs of potential vorticity
distribution at t 5 350 for cases of F1 5 5, F2 5 4,
and a 5 0.4 and 0.5. As shown in Figs. 11a, 11b, and
11d, distinct peaks separated by well-defined plateaus
occur for the lower layer with a 5 0.5 and for the upper
layer in both cases. By identifying the contour corre-
sponding to each distinct value, we find that the peaks
correspond to chaotic regions located at the surround-
ings of the cat’s-eye structures and that the lower plateau
corresponds to the jet core, a transport barrier. In con-
trast, the PDF in Fig. 11c (corresponding to the lower

layer in the case a 5 0.4) exhibits a single dominant
peak, suggestive of a large mixing region. This is exactly
the region occupied by the filaments of potential vor-
ticity contours. This relatively large mixing region ap-
parently arises because of the destruction of the central
transport barrier.

A measure of mixing of a dynamical property is the
decay rate in time of the potential vorticity variance.
Time series of potential vorticity variance are plotted
in Fig. 12. For a 5 0.4, the variance in the lower layer
is reduced by 71% during the period of 200 # t # 500.
However, the flow in the upper layer for a 5 0.4 and
the flows in both layers for a 5 0.5 show reduction by
less than 23% over the same time span. This is further
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FIG. 10. Number of particles transported across the central stream
(F1 5 5, F2 5 4, a 5 0.4) at each crossing time (the bin size is equal
to 50 time units). The particles are launched at t 5 200 on a uniform
128 3 128 grid. The crossing time is set to be 0 at this launch time.

FIG. 12. Variance of potential vorticity vs time for F1 5 5 and F2

5 4: a 5 0.4, the upper layer (thin solid line); a 5 0.4, the lower
layer (thin dashed line); a 5 0.5, the upper layer (thick solid); a 5
0.5, the lower layer (thick dashed).

FIG. 11. PDF of potential vorticity distributions for F1 5 5 and F2 5 4: (a) a 5 0.4, the upper layer; (b) a 5 0.5,
the upper layer; (c) a 5 0.4, the lower layer; (d) a 5 0.5, the lower layer.
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FIG. 13. Plots of ^u&, the zonal average of the u component of the velocity in the lower layer for F1 5 5 and F2 5
4, at t 5 350: (a) a 5 0.4, and (b) a 5 0.5.

FIG. 14. Streamfunction contours in a reference frame moving with speed c, where c is the estimated phase speed,
for F1 5 5 and F2 5 4, at t 5 350: (a) a 5 0.5, c 5 0.04; (b) a 5 0.4, c 5 0.04. The estimate of c for a 5 0.4 is
associated with significant uncertainty.

evidence that destruction of transport barriers enhances
mixing effectively.

6. Critical-line merger

We are now in a better position to address the question
of whether the decay of the velocity field with depth
causes the merger of critical lines with depth and, if so,
whether this effect causes destruction of the central bar-
rier at depth. An immediate difficulty is that critical lines
are clearly defined only when the meander amplitude is
small, so that the zonal velocity field is dominated by
the background or mean (zonal average) profile. When
the meander amplitude is large enough to alter the mean,
the resulting profile may deviate significantly from one’s
usual idea of a jet. For example, the case F1 5 0.5, F2

5 0.4, and a 5 0.4 produces a lower-layer zonal average
^u& with a ‘‘double jet’’ structure (Fig. 13a). The y values
of the two maxima in the profiles roughly correspond to
the y values of the peaks of the meander crests and
troughs. (A single jet profile reemerges when a is in-
creased to 0.5.) Even if the instantaneous velocity u is
used to define critical lines the result is ambiguous: the
y value at which u 5 c varies dramatically with x and t.

Despite these ambiguities, there is strong evidence
that increasing the vertical shear parameter a leads to
something like critical-line merger in the lower layer as
postulated by Meyers (1994) and Pratt et al. (1995).
Figure 14a shows the lower-layer streamfunction con-
tours for the case a 5 0.5 just discussed. The plot is
made in a reference frame moving at the speed c 5
0.04, a crude estimate of the meander phase speed. The
centers of the cat’s eyes lie at | y | ø 2 and these would
be the critical lines if the meander had a small amplitude.
When a is decreased to 0.4 (Fig. 14b), these centers
migrate inward and actually cross the line y 5 0. In
other words, the centers that originally lie to the north
of the central latitude of the jet are displaced to the
south of that latitude, and vice versa. The geometrical
changes and transport that accompany this migration are
similar to what was observed in the barotropic model
of YPJ02 where the critical lines were brought together
by decreasing the value of b.

7. Conclusions and discussions

A 2½-layer model is used to examine whether cross-
jet transport can be enhanced at depth in a surface-
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intensified ocean jet. To confine the parameter space to
a manageable and relevant size, we concentrate on pa-
rameter values that are consistent with observed data
from the Gulf Stream. Two strikingly different scenarios
are identified in our numerical simulation, resulting
from different magnitudes of vertical shear, measured
by the value of a. For a $ 0.5, both layers display
quasi-steady meandering jets. Cross-jet transport is
blocked. On the other hand, for a , 0.5, the flow ex-
periences something like separatrix reconnection ac-
companied by baroclinic instability (in the sense dis-
cussed in section 3). The jet meander in the lower layer
is replaced by a mixing region characterized by chaotic
advection. In this layer cross-jet transport is enhanced.
After the period of baroclinic growth, the flow in the
lower layer reorganizes into a new meandering jet. Sub-
sequent cross-jet transport is again blocked. This be-
havior suggests that deep cross-jet transport in jets like
the Gulf Stream may occur primarily during periods of
baroclinic growth. In a recent analysis of Gulf Stream
energetics based on direct velocity measurements, Cro-
nin and Watts (1996) described the intermittent nature
of this process. They identified six episodes of positive
baroclinic conversion, each lasting about a month, with-
in the 26-month experiment.

Certain aspects of our findings bear similarity to a
study by Marshall et al. (1999) of baroclinic instability
in 3- and 4-layer zonal jets. For example, the results of
long time integration in their 4-layer model is a ho-
mogenization of potential vorticity in the lower two lay-
ers accompanied by persistence of strong gradients in
the upper two layers. However, the gradients are con-
fined to meridional side walls of the zonal channel, not
the jet core. The boundary layers are forced through the
maintenance of the elevation of the upper interface
along the side walls: our layers evolve freely. Our nu-
merical experiments are performed over a shorter time
span and are meant to simulate a sustained period of
neutral meandering or, in the case of baroclinic insta-
bility, a single growth cycle.

Another important distinction between our work and
the majority of studies of jet baroclinic instability is our
emphasis on Lagrangian (as opposed to Eulerian) trans-
port. The release of potential energy that defines baro-
clinic instability is associated with a meridional redis-
tribution of mass within layers and hence a meridional
Eulerian transport of the form ^nndn&, where nn and dn

are meridional velocity and layer thickness in layer n
and the brackets denote a zonal average. The Lagrangian
‘‘transport’’ that centers our study is an exchange of
fluid parcels across a boundary defined by the flow.
Earlier studies of Lagrangian transport in meandering
jets use a turnstile lobe analysis to calculate this trans-
port. In our study the effective invariant manifolds of
the middle layer are too intricate to make a lobe analysis
feasible. However, we are still able to use the upper
layer manifolds, which contain less fine structure, along
with the upper-layer potential vorticity distribution to

define a boundary (the jet core) across which middle-
layer transport can be measured. We then use a trajec-
tory crossing times as the measure. Note that this type
of transport can be finite even when ^nndn& 5 0.

Mixing of potential vorticity is enhanced when lower-
layer cross-jet transport occurs. PDFs of potential vor-
ticity show distinct peaks corresponding to mixing re-
gions and plateaus corresponding to transport barriers.
When the central transport barrier is destroyed, the PDF
contains a single peak, suggestive of mixing in the cen-
tral region. The mixing in this case is also indicated by
a relatively rapid decay in the variance of middle-layer
potential vorticity. The mixing in this case is also in-
dicated by a relatively rapid decay in the variance of
middle-layer potential vorticity.

In comparison with YPJ02, we find important simi-
larities as well as significant differences. In YPJ02,
cross-jet transport was generated when the ambient po-
tential vorticity gradient b was near zero. A similar
effect occurs in the lower layer of the 2½-layer model
when the initial potential vorticity gradient due to the
thickness gradient (2a 2 1)F2U is negative (a , 0.5).
The resulting exchange is more robust and more com-
plicated than that observed by YPJ02, where a fairly
straightforward separatrix reconnection occurred in a
small parameter space. In the present study, more com-
plicated geometric structures arise because of baroclinic
instability. In deriving these results, the parameters F1

and F2 were calibrated by observed data for the Gulf
Stream. However, if the coupling between layers is suf-
ficiently small, then the flow becomes baroclinically sta-
ble. It is possible that such a scenario may occur in
other parts of the ocean.

Cronin and Watts (1996) and Savidge and Bane
(1999a,b) both show that the deep Gulf Stream is dom-
inated by strong barotropic eddies that translate at the
same speed as the shallow meanders. A shortcoming of
the 2½-layer model is that this top-to-bottom behavior
is not possible.
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